1319

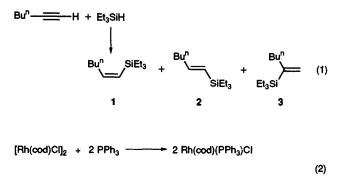
Complete Reversal of Stereoselectivity in Rhodium Complex-catalysed Hydrosilylation of Alk-1-yne

Ryo Takeuchi* and Nao Tanouchi

Department of Chemistry, Yokohama City University, Kanazawa-ku, Yokohama 236, Japan

 $[Rh(cod)Cl]_2$ -catalysed hydrosilylation of hex-1-yne with Et₃SiH in EtOH or DMF is highly selective for the formation of (*Z*)-vinylsilane, whereas $[Rh(cod)Cl]_2$ -PPh₃ in MeCN or PrⁿCN is highly selective for the formation of (*E*)-vinylsilane; the active species for *cis* addition has been revealed to be Rh¹ cationic complex generated *in situ*.[†]

Hydrosilylation of alkynes has synthetic value, because the vinylsilane products are versatile intermediates in organic synthesis.¹ The most straightforward and simple method for the preparation of vinylsilanes is hydrosilylation of alkynes. With alk-1-ynes, the formation of three isomers is possible, and much effort has been expended in developing highly selective hydrosilylation.²

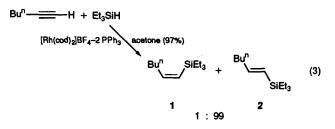

In the course of our studies,³ we investigated Rh-catalysed hydrosilylation of hex-1-yne with Et_3SiH in various solvents; both stereoisomers were obtained in high yields with high selectivites by choosing the reaction conditions.

The hydrosilylation of hex-1-yne with Et_3SiH was carried out in various solvents, using $[Rh(cod)Cl]_2$ as a catalyst [eqn. (1)]. Results are summarized in Table 1. A high degree of selectivity forming (Z)-vinylsilane 1 was attained using EtOH or DMF (entries 5 and 6). The reactions in benzene, acetone Table 1 [Rh(cod)Cl]₂-catalysed hydrosilylation of hex-1-yne with Et_3SiH^a

Entry	Solvent	Yield (%) ^b	Product ratio ^c				
			1	:	2	:	3
1	Benzene	85	82		15		3
2	Acetone	89	68		29		3
3	THF	68	90		5		5
4	CH_2Cl_2	91	77		13		10
5	EtOH	85	94		4		2
6	DMF	80	97		1		2
7d,e	MeCM	93	2		97		1
8^d	MeCN	18	36		33		31
9d,e	Pr ⁿ CN	85	2		96		2

^{*a*} A mixture of hex-1-yne (8 mmol), Et₃SiH (12 mmol), [Rh(cod)Cl]₂ (0.004 mmol) and solvent (12 ml) was stirred at room temp. for 41 h. ^{*b*} Isolated yield based on the amount of hex-1-yne charged. ^{*c*} Determined by ¹H NMR. ^{*d*} [Rh(cod)Cl]₂ (0.012 mmol). ^{*e*} PPh₃ (0.048 mmol).

[†] Abbreviations used: cod = cycloocta-1,5-diene, DMF = dimethylformamide, THF = tetrahydrofuran.



 $\frac{\text{Rh}(\text{cod})(\text{PPh}_3)\text{Cl} + \text{PPh}_3 \longrightarrow \text{Rh}(\text{cod})(\text{PPh}_3)_2^* + \text{CI}}{\text{Polar solvent}}$

and CH_2Cl_2 were less selective (entries 1, 2 and 4). Rhodium complexes are known to show selectivity forming (Z)-vinylsilane *via* the *trans* addition of Si–H across the carbon–carbon triple bond, a very rare event in transition metal complexcatalysed hydrometallation of alkynes, in the hydrosilylation of alk-1-ynes.⁴ The mechanism of *trans* addition proposed involves the isomerization of a β -silylalkenylrhodium complex *via* a zwitterionic carbene complex.⁵ Polar solvents such as EtOH or DMF stabilize the intermediate and hence increased the selectivity forming (Z)-vinylsilane 1.

Using PPh₃ in nitrile solvent allowed a complete reversal of the stereochemistry. (E)-Vinylsilane 2 was obtained in 97% selectivity when $[Rh(cod)Cl]_2$ and 2 equiv. of PPh₃ per Rh atom was used as a catalyst (entry 7). The same reaction catalysed by $[Rh(cod)Cl]_2$ alone resulted in a non-selective formation of products with poor yields (entry 8). The reaction using PPh₃ in PrⁿCN gave a similar result (entry 9). The addition PPh₃ in other solvents was less effective. This is the first example of a highly selective synthesis of either (E)- or (Z)-vinylsilane by the same metal complex catalysed-hydrosilylation of the same alkyne with the same hydrosilane.

Rhodium phosphine species appeared to be necessary for the selective formation of (E)-vinylsilane 2. The reaction of $[Rh(cod)Cl]_2$ with PPh₃ is reported to give a monomeric phosphine species [eqn. (2)].⁶ When the reaction was carried out in polar solvent, the coordination of another molecule of PPh₃ to a monomeric phosphine species caused the dissociation of a chloro ligand to give a cationic species, which could be isolated as a tetraphenylborate or a perchlorate salt.⁷ Since it can be assumed that the Rh¹ cationic complex generated by the dissociation of a chloro ligand in MeCN would catalyse the

reaction via the cis addition, we examined the Rh^{I} cationic complex catalysed hydrosilylation of hex-1-yne with Et₃SiH.

We carried out the reaction catalysed by $[Rh(cod)_2]BF_4 + PPh_3$ in acetone [eqn. (3)] As expected, the (*E*)-vinylsilane **2** was obtained (99% selectively). The present result clearly indicates that Rh^I cationic complex is the active species in *cis* addition.

Further mechanistic studies and Rh^I cationic complexcatalysed hydrosilylations are in progress.

Received, 4th May 1993; Com. 3/02539J

References

- 1 I. Fleming, J. Dunogues and R. H. Smithers, Org. React., 1989, 37, 57.
- 2 K. Tamao, J. Yoshida, H. Yamamoto, T. Kakui, H. Matsumoto, M. Takahashi, A. Kurita, M. Murata and M. Kumada, Organometallics, 1982, 1, 355; L. N. Lewis, K. G. Sy, G. L. Bryant, Jr. and P. E. Donahue, Organometallics, 1991, 10, 3750.
- 3 R. Takeuchi, N. Ishii and N. Sato, J. Chem. Soc., Chem. Commun., 1991, 1247; R. Takeuchi, N. Ishii, M. Sugiura and N. Sato, J. Org. Chem., 1992, 57, 4189; R. Takeuchi, M. Sugiura, N. Ishii and N. Sato, J. Chem. Soc., Chem. Commun., 1992, 1358; R. Takeuchi and M. Sugiura, J. Chem. Soc., Perkin Trans. 1, 1993 1031.
- 4 I. Ojima, M. Kumagai and Y. Nagai, J. Organomet. Chem., 1974, 66, C14; H. Watanabe, T. Kitahara, T. Motegi and Y. Nagai, J. Organomet. Chem., 1977, 139, 215; H. M. Dickers, R. N. Haszeldine, A. P. Mather and R. V. Parish, J. Organomet. Chem., 1978, 161, 91; K. A. Brady and T. A. Nile, J. Organomet. Chem., 1981, 206, 299.
- 5 I. Ojima, N. Clos, R. J. Donovan and P. Ingallina, Organometallics, 1990, 9, 3127.
- 6 J. Chatt and L. M. Venanzi, J. Chem. Soc. (A), 1957, 4735; M. A. Bennett and G. Wilkinson, J. Chem. Soc. (A), 1961, 1418; K. Vrieze, H. C. Volger and A. P. Praat, J. Organomet. Chem., 1968, 14, 185.
- 7 R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 1971, 93, 2397.